A Comparative Performance Analysis of Artificial Neural Networks and Particle Swarm Optimization based Classification System using Electroencephalogram Signals

نویسندگان

  • J. D. Dhande
  • S. M. Gulhane
چکیده

The aim of this paper is to develop the classification system using Artificial Neural Network for Electroencephalogram (EEG) signals. A good standard traditional method is to use Electroencephalogram for diagnosing patients brain functioning that corresponds to epilepsy and different brain disorders. This research focused on designing new classification techniques for single channel EEG recordings. This work proposes three classification techniques namely Back propagation feed forward neural networks (BPFFNN) with different training algorithms, Radial Basis Function Neural Network (RBFNN) and Particle swarm optimization (PSO) based neural network to classify from EEG signals whether a person is epileptic or nonepileptic. The first aspects of proposed work is to extract the features from EEG signals based on statistical measures and evaluate the neural networks architecture with various numbers of hidden neurons to reduce the complexity of the system. Feed forward neural networks have trained using different learning algorithms. Particle swarm optimization techniques proposed with optimal parameters to train the feed forward neural network. The performance of proposed method has compared with other commonly used classification techniques. The BPLM, RBFNN and PSONN provide very promising and practical results and required much less time and memory resources and improved classification accuracy and generalization. This study based on EEG benchmark database and it is publically available source.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy

Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

Experimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam

Crack identification is a very important issue in mechanical systems, because it is a damage that if develops may cause catastrophic failure. In the first part of this research, modal analysis of a multi-cracked variable cross-section beam is done using finite element method. Then, the obtained results are validated usingthe results of experimental modal analysis tests. In the next part, a nove...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Classification of mental task from EEG data using neural networks based on particle swarm optimization

The brain–computer interface (BCI) is a system that transforms the brain activity of different mental tasks into a control signal. The system provides an augmentative communication method for patients with severe motor disabilities. In this paper, a neural classifier based on improved particle swarm optimization (IPSO) is proposed to classify an electroencephalogram (EEG) of mental tasks for le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017